
MEMORY STACKS IN 8086 MICROPROCESSORS

STACK

The stack is a block of memory that may be used for temporarily storing the contents of the

registers inside the CPU. It is a top-down data structure whose elements are accessed using the

stack pointer (SP) which gets decremented by two as we store a data word into the stack and

gets incremented by two as we retrieve a data word from the stack back to the CPU register.

The process of storing the data in the stack is called ‘pushing into’ the stack and the

reverse process of transferring the data back from the stack to the CPU register is known as

‘popping off’ the stack. The stack is essentially Last-In-First-Out (LIFO) data segment. This

means that the data which is pushed into the stack last will be on top of stack and will be popped

off the stack first.

STACK STRUCTURE OF 8086

Stack contains a set of sequentially arranged data types, with the last item appearing on top of

the stack. This item will be popped off the stack first for use by the CPU. The stack pointer is

a 16-bit register that contains the offset address of the memory location in the stack segment.

The stack segment, like any other segment, may have a memory block of a maximum of 64

Kbytes locations, and thus may overlap with any other segments. Stack Segment register (SS)

contains the base address of the stack segment in the memory.

The Stack Segment register (SS) and Stack pointer register (SP) together address the stack-top

as explained below:

Let the content of SS be 5000H and the content of the stack pointer register be 2050H.To find

the current stack top address ,the stack segment register content is shifted left by four bit

positions (multiplied by 10H) and the resulting 20 bit content is added with 16 bit offset value

,stored in the stack pointer register.

If the stack top points to a memory location 52050H, it means that the location 52050H is

already occupied with the previously pushed data. The next 16 bit push operation will

decrement the stack pointer by two, so that it will point to the new stack-top 5204EH and the

decremented contents of SP will be 204EH. This location will now be occupied by the recently

pushed data.

Thus for a selected value of SS, the maximum value of SP=FFFFH and the segment can have

maximum of 64K locations. If the SP starts with an initial value of FFFFH, it will be

decremented by two whenever a 16-bit data is pushed onto the stack. After successive push

operations, when the stack pointer contains 0000H, any attempt to further push the data to the

stack will result in stack overflow.

After a procedure is called using the CALL instruction, the IP is incremented to the next

instruction. Then the contents of IP, CS and flag register are pushed automatically to the stack.

The control is then transferred to the specified address in the CALL instruction i.e. starting

address of the procedure. Then the procedure is executed.

If the stack top points to a memory location 52050 H it means that the location 52050H is

already occupied ie, Previously pushed data is available at 52050 H. The next 16-bit push

operation will decrement the stack pointer by two, so that it will point to the new stack top

5204E H, and the decremented contents of SP will be 204E H. This location will now be

occupied by the recently pushed data. Thus if a 16-bit data is pushed onto the stack ,the push

operation will decrement the SP by two because two locations will be required for a 2-byte data

The maximum value of SP =FFFF H and segment can have maximum of 64K locations. Thus

after starting with an initial vale of FFFF the stack pointer is decremented by two whenever a

16 bit data is pushed into the stack. After successive push operation when the stack pointer

contains 0000 H any attempt to further push the data to the stack will result in stack overflow

Each PUSH operation decrements SP by two, while each POP operation increments the SP.The

POP operation is used to retrieve the data stored on to the stack. Fig 4.2 shows the stack

overflow conditions while Fig 4.3 shows the effect of push and pop operations on the stack

memory block.

Programming using stack

The 8086 has four segement registers namely CS ,DS,SS,and ES.Out of these segments SS

contains the segment value for stack while SP contains the offset for the stack -top Ina

program the stack segment can be defined in a similar way as the data segment .The

ASSUME directives directs the name of stack segment to assembler.

Write a program to calculate squares of BCD numbers 0to 9 and store them sequentially from

2000H offsets onwards in the current data segment. Write a subroutine for the calculation of

the square of a number

INTERRUPTS IN 8086

While the CPU is executing a program, an interrupt breaks the normal execution of instructions,

diverts its execution to some other program called Interrupt Service Routine (ISR) Whenever

an interrupt occurs the processor completes the execution of the current instruction and starts

the execution of an Interrupt Service Routine (ISR) or Interrupt Handler.

ISR is a program that tells the processor what to do when the interrupt occurs. At the end of

the ISR the last instruction should be IRET. After the execution of ISR, control returns back to

the main routine where it was interrupted.

• Whenever a number of devices interrupt a CPU at a time, and if the processor is able to

handle them properly, it is said to have multiple interrupt processing capability.

• There are two interrupt pins in 8086. NMI and INTR

Need for Interrupt: Interrupts are particularly useful when interfacing I/O devices that provide

or require data at relatively low data transfer rate.

NMI

It is a single non-maskable interrupt pin (NMI) having higher priority. When this interrupt is

activated,

these actions take place −

• Completes the current instruction that is in progress.

• Pushes the Flag register values on to the stack.

• Pushes the CS (code segment) value and IP (instruction pointer) value of the return

address on to

• the stack.

• IP is loaded from the contents of the word location 00008H.(Type 2*4=00008 H)

• CS is loaded from the contents of the next word location 0000AH.

• Interrupt flag and trap flag are reset to 0

INTR

The INTR is a maskable interrupt pin. It can be accepted (enable) or rejected (masked).

The microprocessor enabled the interrupt using set interrupt flag instruction. It should disable

using clear interrupt Flag instruction.

These actions are taken by the microprocessor −

• First completes the current instruction.

• Activates INTA output and receives the interrupt type, say X.

• Flag register value, CS value of the return address and IP value of the return address

are pushed

• on to the stack.

• IP value is loaded from the contents of word location X × 4

• CS is loaded from the contents of the next word location.

• Interrupt flag and trap flag is reset to 0

TYPES OF INTERRUPTS

In general there are two types of Interrupts:

Internal (or) Software Interrupts are generated by a software instruction and operate

similarly to a jump or branch instruction.

External (or) Hardware Interrupts are caused by an external hardware module.

HARDWARE INTERRUPTS

Hardware interrupts are generated by hardware devices when something unusual happens; this

could be a key-press or a mouse move or any other action.

It can be divided into two

1. Maskable 2. Non maskable

• Maskable Interrupts:There are some interrupts which can be masked (disabled)or

enabled by the processor.

• Non-Maskable Interrupts:There are some interrupts which cannot be masked out

or ignored by the processor. These are associated with high priority tasks which

cannot be ignored (like memory parity or bus faults).

SOFTWARE INTERRUPTS

Interrupts are generated by a software instruction and operate similarly to a jump or branch

instruction.

• 256 interrupts : INT n is invoked as software interrupts- n is the type no in the range 0

to 255(00 to FF)

Type 0 to Type4 (Dedicated Interrupts or Predefined Interrupts)

- TYPE 0 interrupt represents division by zero situation.

- TYPE 1 interrupt represents single-step execution during the debugging of a program.

- TYPE 2 interrupt represents non-maskable NMI interrupt.

- TYPE 3 interrupt represents break-point interrupt.

- TYPE 4 interrupt represents overflow interrupt.

Type 5 to 31(Not used by 8086, reserved for higher processor like 80286,80386….

Type 32-255(Available for user) : User defined interrupts

Devide by zero(type-0) Interrupt

• This interrupt occurs whenever there is division error i.e. when the result of a division

is too large to be stored. This condition normally occurs when the divisor is very small

as compared to the dividend or the divisor is zero.

• Its ISR address is stored at location 0 x 4 = 00000H in the IVT.

Single Step(type-1) Interrupt

• The microprocessor executes this interrupt after every instruction if the TF is set.

• It puts microprocessor in single stepping mode i.e. the microprocessor pauses after

executing every instruction. This is very useful during debugging.

• Its ISR generally displays contents of all registers. Its ISR address is stored at location

1 x 4 = 00004H in the IVT.

Non-Maskable(type-2) Interrupt

• The microprocessor executes this ISR in response to an interrupt on the NMI (Non

mask-able Interrupt) line.

• Its ISR address is stored at location 2 x 4 = 00008H in the IVT.

Breakpoint(type-3) Interrupt

• This interrupt is used to cause breakpoints in the program. It is caused by writing the

instruction INT 03H or simply INT.

• It is useful in debugging large programs where single stepping is efficient.

• Its ISR is used to display the contents of all registers on the screen. Its ISR address is

stored at location 3 x 4 = 0000CH in the IVT

Overflow (type-4) Interrupt

• This interrupt occurs if the overflow flag is set and the microprocessor executes the

INTO (Interrupt on Overflow) instruction.

• It is used to detect overflow error in signed arithmetic operations.

• Its ISR address is stored at location 4 x 4 = 00010H in the IVT.

Interrupt Priority

The table shows interrupt priority in 8086

Suppose an external device interrupts the CPU at the interrupt pin either NMI or INTR of the

8086,while executing an instruction of a program. The CPU first completes the execution of

the current instruction. The IP is then incremented to point to the next instruction .The CPU

acknowledges the requesting device on its INTA pin. If it is an INT request ,the CPU checks

the IF flag. If the IF is set ,the interrupt request is acknowledged using INTA pin .If the IF is

not set, the interrupt requests are ignored.

INTERRUPT SERVICE ROUTINE

For every interrupt, there must be an interrupt service routine (ISR), or interrupt handler. When

an interrupt is invoked, the microprocessor runs the interrupt service routine. For every

interrupt, there is a fixed location in memory that holds the address of its ISR. The group of

memory locations set aside to hold the addresses of ISRs is called the interrupt vector table.

When an interrupt is occurred, the microprocessor stops execution of current instruction. It

transfers the content of program counter (CS and IP) into stack.

The first 1Kbyte of memory of 8086 (00000 to003FF) is set aside as a table for storing the

starting addresses of Interrupt Service Procedures (ISP). Since 4-bytes are required for storing

starting addresses of ISPs, the table can hold 256 Interrupt procedures.

The starting address of an ISP is often called the Interrupt Vector or Interrupt Pointer. Therefore

the table is referred as Interrupt Vector Table. Each interrupt type is given a number between

0 to 255 and the address of each interrupt is found by multiplying the type by 4 e.g. for type

11, interrupt address is 11 x 4 = 4410= 0002CH

When the 8086 responds to an interrupt, it automatically goes to the specified location in the

Interrupt Vector Table in 8086 to get the starting address of interrupt service routine

Non mask-able interrupt

• 8086 has a non maskable interrupt input pin (NMI) that has the highest priority

• TRAP(Single step TYPE-1) is an internal interrupts having the highest priority among

all the interrupts except divide by zero

• On receiving an interrupt on NMI line, the microprocessor executes INT

• Microprocessor obtains the ISR address from location 2 x 4 = 00008H from the IVT.

• It reads 4 locations starting from this address to get the values for IP and CS to execute

the ISR.

mask-able interrupt

This is a mask-able, level triggered, low priority interrupt.

• 8086 also provide a pin INTR that has lowest priority as compared to NMI

• On receiving an interrupt on INTR line, the microprocessor executes 2 INTA pulses.

• 1st INTA pulse – The interrupting device calculates (prepares to send) the vector

number.

• 2nd INTA pulse – The interrupting device sends the vector number ‘N’ to the

microprocessor.

• Now microprocessor multiplies N x 4 and goes to the corresponding location in the IVT

to obtain the ISR address. INTR is a mask-able interrupt.

• It is masked by making IF = 0 by software through CLI instruction.

• It is unmasked by making IF = 1 by software through STI instruction.

Interrupt acknowledgment bus cycle

The Operation of an Interrupt sequence on the 8086 Microprocessor:

1. The SP is decremented by two and the contents of the flag register is pushed to the

stack memory

2. The interrupt system is disabled by clearing the interrupt flag(IF)

3. The single step trap flag is disabled by clearing the Trap Flag(TP)

4. The stack pointer is decremented by two and contents of the CS register is pushed to

the stack memory

5. Again, stack pointer is decremented by two and contents of the IP register is pushed to

the stack memory

6. In case of hardware interrupts through INTR the processor runs an interrupt

acknowledge cycle to get the interrupt type number. For software interrupt the type

number is specified in the instruction itself

7. The processor generate a 20 bit memory address by multiplying the type number by

four and sign extending 20 bit. This memory address is the address of the interrupt

vector table

8. The first word pointed by the vector table address is loaded in the IP and next is

loaded in the CS register

9. The 20 bit physical address of the ISR is calculated by multiplying the contents of the

CS register by 16 and adding it to IP

10. The processor executes the ISR to service the interrupt

11. The ISR will be terminated by IRET instruction. When the instruction is executed ,the

top of the stack is popped to the IP,CS and flag register one word by one word

12. Thus at the end of the ISR ,the previous status of the processor is restored and so the

processor will resume execution of normal program from the instruction where it was

suspended

Interrupt Programming

While programming for any type of interrupt, the programmer must either externally or

through the program, set the interrupt vector table for that type preferably with the SC and IP

addresses of the interrupt service routine .The method of defining the interrupt service routine

for software as well as hardware interrupt is the same Fig 4.7 shows the execution sequences

in case of a software interrupt .Fig 4.8 shows the transfer of control for the nested interrupts.

MACROS

A macro is a named block of assembly language statements. Once defined, it can be invoked

(called) as many times in a program as you wish. When you invoke a macro, a copy of its code

is inserted directly into the program at the location where it was invoked. This type of automatic

code insertion is also known as inline expansion. It is customary to refer to calling a macro,

although technically there is no CALL instruction involved.

Defining a Macro

A macro is defined using the MACRO and ENDM directives

macroname MACRO parameter-1, parameter-2...statement-list

.

 .

 .

 ENDM

The below definition of a macro assign the name DISPLAY to the instruction sequence between the

directives MACRO and ENDM

Passing parameters to a MACRO

Using parameters in a definition ,the programmer specifies the parameters of the macro those

are likely to be changed each time the macro is called.

This parameter MSG can be replaced by MSG1 or MSG2 while calling the macro as shown

Invoking Macros

A macro is called (invoked) by inserting its name in the program, possibly followed by macro

arguments.

The syntax for calling a macro is:

 macroname argument-1, argument-2, ...

 Macroname must be the name of a macro defined prior to this point in the source code. Each

argument is a text value that replaces a parameter in the macro. The order of arguments must

correspond to the order of parameters, but the number of arguments does not have to match

the number of parameters. If too many arguments are passed, the assembler issues a warning.

If too few arguments are passed to a macro, the unfilled parameters are left blank.

Procedures

Defining a Procedure

Informally, we can define a procedure as a named block of statements that ends in a return

statement. A procedure is declared using the PROC and ENDP directives. It must be assigned

a name (a valid identifier). A procedure must be written in the end of the code segment (before

end directive), and it can't receive any parameter.

When we create a procedure other than your program’s startup procedure, end it with a RET

instruction. RET forces the CPU to return to the location from where the procedure was called.

A procedure is defined using the PROC and ENDP directives.

The syntax is:

procedurename PROC

.

 .

 Ret

 procedurename ENDP

Example :SumOf PROC

 add ax,bx

add ax,cx

ret

 SumOf ENDP

Invoking procedures

 A procedure is called (invoked) by inserting its name in the program Preceded by (call).

The syntax for calling a procedure is:

 Call procedurename

Difference between Macro and Procedure :

S.No. MACRO PROCEDURE

01.

Macro definition contains a set of instruction to

support modular programming.

Procedure contains a set of instructions which can

be called repetitively which can perform a specific

task.

02.

It is used for small set of instructions mostly

less than ten instructions.

It is used for large set of instructions mostly more

than ten instructions.

03. In case of macro memory requirement is high. In case of procedure memory requirement is less.

04.

CALL and RET instruction/statements are not

required in macro.

CALL and RET instruction/statements are required

in procedure.

05.

Assembler directive MACRO is used to define

macro and assembler directive ENDM is used

to indicate the body is over.

Assembler directive PROC is used to define

procedure and assembler directive ENDP is used to

indicate the body is over.

06.

Execution time of macro is less than it executes

faster than procedure.

Execution time of procedures is high as it executes

slower than macro.

07.

Here machine code is created multiple times as

each time machine code is generated when

macro is called.

Here machine code is created only once, it is

generated only once when the procedure is defined.

08.

In a macro parameter is passed as part of

statement that calls macro.

In a procedure parameters are passed in registers

and memory locations of stack.

09.

Overhead time does not take place as there is no

calling and returning.

Overhead time takes place during calling procedure

and returning control to calling program.

